Abstract

The objective of this study was to investigate the effects of two different PAHs and a complex petrochemical mixture on the common goby, Pomatoschistus microps, using selected biomarkers as effect criteria. Benzo[a]pyrene (BaP) and anthracene were used as reference substances, while the water accommodated fraction of #4 fuel-oil (#4 WAF) was used as an example of a petrochemical mixture. P. microps was used since it is both a suitable bioindicator and a good test organism. Groups of fish were exposed to different concentrations of each of the test substances for 96 h and the activities of several enzymes commonly used as biomarkers were determined at the end of the bioassays. All the substances inhibited P. microps acetylcholinesterase (AChE) indicating that they have at least one mechanism of neurotoxicity in common: the disruption of cholinergic transmission by inhibition of AChE. An induction of lactate dehydrogenase (LDH) activity was found in fish exposed to BaP or to anthracene, suggesting an increase of the anaerobic pathway of energy production. On the contrary, inhibition of LDH was found in fish exposed to #4 WAF, suggesting a distinct effect of the mixture. An induction of P. microps glutathione S-transferase (GST) activity was found in fish exposed to BaP or to #4 WAF, while an inhibition was observed after exposure to anthracene. These results suggest that GST is involved in the detoxification of BaP and #4 WAF, but not of anthracene. All the substances increased catalase activity and isolated PAHs also increased superoxide dismutase, glutathione reductase and glutathione peroxidase activities, while #4 WAF did not cause significant alterations on these enzymes. These results suggest that all the substances may induce oxidative stress on P. microps, with BaP and anthracene apparently having more oxidative stress potential than #4 WAF.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.