Abstract

BackgroundThough inconsistent, acute effects of ambient nitrogen oxides on cardiovascular mortality have been reported. Whereas, interactive roles of temperature on their relationships and joint effects of different indicators of nitrogen oxides were less studied. This study aimed to extrapolate the independent roles of ambient nitrogen oxides and temperature interactions on cardiovascular mortality. MethodsData on mortality, air pollutants, and meteorological factors in Shenzhen from 2013 to 2019 were collected. Three indicators including nitric oxide (NO), nitrogen dioxide (NO2), and nitrogen oxides (NOX) were studied. Adjusted generalized additive models (GAMs) were applied to analyse their associations with cardiovascular mortality in different groups. ResultsThe average daily concentrations of NO, NO2, and NOX were 11.7 μg/m3, 30.7 μg/m3, and 53.2 μg/m3, respectively. Significant associations were shown with each indicator. Cumulative effects of nitrogen oxides were more obvious than distributed lag effects. Males, population under 65 years old, and population with stroke-related condition were more susceptible to nitrogen oxides. Adverse effects of nitrogen oxides were more significant at low temperature. Impacts of NO2 on cardiovascular mortality, and NO on stroke mortality were the most robust in the multi-pollutant models, whereas variations were shown in the other relationships. ConclusionsLow levels of nitrogen oxides showed acute and adverse impacts and the interactive roles of temperature on cardiovascular mortality. Cumulative effects were most significant and joint effects of nitrogen oxides required more attention. Population under 65 years old and population with stroke-related health condition were susceptible, especially days at lower temperature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.