Abstract

BackgroundAir pollution is associated with respiratory symptoms, lung function decrements, and hospitalizations. However, there is little information about the influence of air pollution on lung injury.ObjectiveIn this study we investigated acute effects of air pollution on pulmonary function and airway oxidative stress and inflammation in asthmatic children.MethodsWe studied 182 children with asthma, 9–14 years of age, for 4 weeks. Daily ambient concentrations of sulfur dioxide, nitrogen dioxide, ozone, and particulate matter ≤ 2.5 μm in aerodynamic diameter (PM2.5) were monitored from two stations. Once a week we measured spirometry and fractional exhaled nitric oxide (FeNO), and determined thiobarbituric acid reactive substances (TBARS) and 8-isoprostane—two oxidative stress markers—and interleukin-6 (IL-6) in breath condensate. We tested associations using mixed-effects regression models, adjusting for confounding variables.ResultsInterquartile-range increases in 3-day average SO2 (5.4 ppb), NO2 (6.8 ppb), and PM2.5 (5.4 μg/m3) were associated with decreases in forced expiratory flow between 25% and 75% of forced vital capacity, with changes being −3.1% [95% confidence interval (CI), −5.8 to −0.3], −2.8% (95% CI, −4.8 to −0.8), and −3.0% (95% CI, −4.7 to −1.2), respectively. SO2, NO2, and PM2.5 were associated with increases in TBARS, with changes being 36.2% (95% CI, 15.7 to 57.2), 21.8% (95% CI, 8.2 to 36.0), and 24.8% (95% CI, 10.8 to 39.4), respectively. Risk estimates appear to be larger in children not taking corticosteroids than in children taking corticosteroids. O3 (5.3 ppb) was not associated with health end points. FeNO, 8-isoprostane, and IL-6 were not associated with air pollutants.ConclusionAir pollution may increase airway oxidative stress and decrease small airway function of asthmatic children. Inhaled corticosteroids may reduce oxidative stress and improve airway function.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.