Abstract

IntroductionTranscranial direct current stimulation (tDCS) is a non-invasive technique, used to modify the excitability of the central nervous system. The main mechanism of tDCS is to change the excitability by subthreshold modulation by affecting neuronal membrane potentials in the direction of depolarization or repolarization. tDCS was previously investigated as an alternative adjunctive therapy in patients with epilepsy. We aimed here to investigate the acute effect of tDCS on the photoparoxysmal response (PPR) in EEG. MethodsWe enrolled 11 consecutive patients diagnosed with idiopathic generalized epilepsy who had PPR on at least 2 EEGs. Three different procedures, including sham, anodal, and cathodal tDCS were applied to the patients at intervals of one week by placing the active electrode over Oz, for 2 mA, 20 minutes. Spike-wave indices (SWI) were counted by two researchers independently and were compared during intermittent photic stimulation (IPS) on EEGs both before and after the application. ResultsAfter cathodal tDCS, SWI increased compared to baseline EEG and sham EEG in 3 patients, and after anodal tDCS, SWI increased in 2 patients. Although the SWI values did not change significantly, 8 patients reported subjectively that the applications were beneficial for them and that they experienced less discomfort during photic stimulation after the sessions. There were no side effects except transient skin rash in one patient, only. ConclusionsIn our sham controlled tDCS study with both cathodal and anodal stimulation, our data showed that there was no significant change in SWI during IPS, despite subjective well-being. tDCS’ modulatory effect does not seem to act in the acute phase on EEG parameters after photic stimulation.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call