Abstract
The present studies sought to investigate the effect of milnacipran called the serotonin (5-HT) and noradrenaline (NA) reuptake inhibitor (SNRI) on the interaction of central locus coeruleus noradrenergic and dorsal raphe nucleus serotonergic functional activity by utilizing in vivo microdialysis. A single administration of milnacipran (60 mg/kg, s.c.) markedly decreased the levels of NA and its metabolite, 4-hydroxy-3-methoxymandelic acid (HMMA), in the locus coeruleus and the levels of, a metabolite of 5-hydroxytryptamine (5-HT), 5-hydroxyindole-3-acetic acid (5-HIAA) in the dorsal raphe nucleus. Combined administration of yohimbine (2 mg/kg, s.c.),?α 2-adrenoceptor?antagonist, at 2 h after milnacipran (60 mg/kg, s.c.) led to a significant increase in NA levels in the locus coeruleus, although yohimbine alone had no effect on these levels. Under similar experimental condition, 5-HIAA levels in the dorsal raphe nucleus remained unchanged. NAN-190 (1 mg/kg, s.c.), 5-HT 1A receptor partial agonist, alone markedly decreased the levels of 5-HIAA in the dorsal raphe nucleus, although this level was not affected by WAY100635, the selective 5-HT 1A receptor antagonist. WAY100635 recovered the milnacipran-induced decrease of 5-HIAA levels in the dorsal raphe nucleus to control levels. On the other hand, NAN-190 did not affect the milnacipran-induced decrease of 5-HIAA levels. Behavioral signs (locomotion and rearing) were markedly observed following milnacipran alone or combined administration of milnacipran and yohimbine. However, the behavioral signs after coadministration of milnacipran and WAY100635 or NAN-190 were relatively poor. These results may suggest that an increase of NA in the locus coeruleus with the treatment of yohimbine after milnacipran results from negative feedback following the blockade of α 2-adrenoceptors achieved with yohimbine, and that WAY100635 but not NAN-190 recovered milnacipran-induced decrease of 5-HIAA in the dorsal raphe nucleus to control levels by preventing the activation for the presynaptic 5-HT 1A autoreceptor.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.