Abstract

We investigated the acute effect of low concentrations of BPA on calcium influx and the mechanism of action of BPA in this rapid response in the rat testis. BPA increased calcium influx at 1 pM and 1 nM at 300 s of incubation, in a similar manner to that of estradiol. At 1 pM, BPA stimulated calcium influx independently of classical estrogen receptors, consistent with a G-protein coupled receptor. This effect also involves the modulation of ionic channels, such as K+, TRPV1 and Cl− channels. Furthermore, BPA is able to modulate calcium from intracellular storages by inhibiting SERCA and activating IP3 receptor/Ca2+ channels at the endoplasmic reticulum and activate kinase proteins, such as PKA and PKC. The rapid responses of BPA on calcium influx could, in turn, trigger a cross talk by MEK and p38MAPK activation and also mediate genomic responses.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.