Abstract

Freshwater harmful algal blooms (HABs) are a major environmental health problem worldwide. HABs are caused by a predominance of cyanobacteria, some of which produce potent toxins. The most ubiquitous cyanotoxin is microcystin (MC) and the congener MC-LR is the most studied due to its toxicity. Short-term exposure to toxins can cause gut microbiome disturbances, but this has not been well described with MC-LR exposure. This study investigated the gut microbial communities of mice from a prior study, which identified significant liver toxicity from ingestion of MC-LR daily for 8 days. CD-1 mice were divided into three dosage groups: control, low exposure (sub-lethal MC-LR concentration), and high exposure (near-lethal MC-LR concentration). Fecal samples were analyzed using 16S rRNA sequencing. Results revealed that at population level, there were no significant shifts in bacterial diversity or the microbial community structure over the exposure period. However, there were significant differences between male and female mice. Predictive functional gene analysis indicated that several metabolic pathways were significantly different in the high dose group before exposure and following 7 doses of MC-LR, as well as between the control and high dose groups on Day 8. Significant differentially abundant taxa were also identified contributing to these pathways. Several pathways, including superpathway of N-acetylneuraminate degradation, were related to liver and gut inflammation. The outcome of this study suggests a need for in-depth investigation of metabolic activity and other functions in the gut in future studies, as well as potential consideration of the role of sex in MC-LR toxicity.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call