Abstract
Chronic pelvic pain of unknown etiology is a common clinical condition and may develop as a result of cross-sensitization in the pelvis when pathological changes in one of the pelvic organs result in functional alterations in an adjacent structure. The aim of the current study was to compare transient receptor potential vanilloid 1 (TRPV1) activated pathways on detrusor contractility in vivo and in vitro using a rat model of pelvic organ cross-sensitization. Four groups of male Sprague-Dawley rats (N = 56) were included in the study. Animals received intracolonic saline (control), resiniferatoxin (RTX, TRPV1 agonist, 10(-7) M), 2,4,6-trinitrobenzene sulfonic acid (TNBS, colonic irritant), or double treatment (RTX followed by TNBS). Detrusor muscle contractility was assessed under in vitro and in vivo conditions. Intracolonic RTX increased the contractility of the isolated detrusor in response to electric field stimulation (EFS) by twofold (P ≤ 0.001) and enhanced the contractile response of the bladder smooth muscle to carbachol (CCh). Acute colonic inflammation reduced detrusor contractility upon application of CCh in vitro, decreased bladder capacity by 28.1% (P ≤ 0.001), and reduced micturition volume by 60% (P ≤ 0.001). These changes were accompanied by an increased number of nonmicturition contractions from 3.7 ± 0.7 to 15 ± 2.7 (N = 6 in both groups, P ≤ 0.001 vs. control). Desensitization of intracolonic TRPV1 receptors before the induction of acute colitis restored the response of isolated detrusor strips to CCh but not to EFS stimulation. Cystometric parameters were significantly improved in animals with double treatment and approximated the control values. Our data suggest that acute colonic inflammation triggers the occurrence of detrusor instability via activation of TRPV1-related pathways. Comparison of the results obtained under in vitro vs. in vivo conditions provides evidence that intact neural pathways are critical for the development of an overactive bladder resulting from pelvic organ cross talk.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: American journal of physiology. Regulatory, integrative and comparative physiology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.