Abstract

We have examined the activation of glial cells and the upregulation of phosphorylated extracellular signaling-regulated kinase (ERK)-1 and -2 in upper thoracic segments of the spinal cord in rats following acute cardiac injury (ACI). ACI was established by intramyocardial injection of formalin and confirmed by hematoxylin and eosin (H&E) and terminal transferase-mediated deoxyuridine triphosphate-biotin nick end labeling (TUNEL) staining. Following ACI, the astrocytes (determined by glial fibrillary acidic protein (GFAP) immunoreactivity (-IR)) and microglia (determined by OX-42-IR) were activated within the thoracic spinal cord. Phosphorylated (phospho-) ERK-IR was also activated in response to ACI. The upregulation of phospho-ERK was observed at 1 h and became very obvious at 6 h following ACI. The upregulated phospho-ERK was evidently expressed in the superficial and deep dorsal horn of the thoracic spinal cord. The activated ERK was also expressed in the intermediolateral nucleus (IML), nucleus intercalatus (IC) and the long processes projecting to the central canal, regions closely associated with autonomic outflow. Thus, the present study suggested that ACI could induce the activation of spinal ERK, which might link the nociceptive processing with the spinal sympathetic reflexes in myocardial injury in clinics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.