Abstract

AimsThe experiments explored for atrial arrhythmogenesis and its possible physiological background in recently developed hetero-(RyR2+/S) and homozygotic (RyR2S/S) RyR2-P2328S murine models for catecholaminergic polymorphic ventricular tachycardia (VT) for the first time. They complement previous clinical and experimental reports describing increased ventricular arrhythmic tendencies associated with physical activity, stress, or catecholamine infusion, potentially leading to VT and ventricular fibrillation.Methods and resultsAtrial arrhythmogenic properties were compared at the whole animal, Langendorff-perfused heart, and single, isolated atrial myocyte levels using electrophysiological and confocal fluorescence microscopy methods. This demonstrated that: (i) electrocardiographic parameters in intact anaesthetized wild-type (WT), RyR2+/S and RyR2S/S mice were statistically indistinguishable both before and after addition of isoproterenol apart from increases in heart rates. (ii) Bipolar electrogram and monophasic action potential recordings showed significantly higher incidences of arrhythmogenesis in isolated perfused RyR2S/S, but not RyR2+/S, relative to WT hearts during either regular pacing or programmed electrical stimulation. The addition of isoproterenol increased such incidences in all three groups. (iii) However, there were no accompanying differences in cardiac anatomy or action potential durations at 90% repolarization and refractory periods. (iv) In contrast, episodes of diastolic Ca2+ release were observed under confocal microscopy in isolated fluo-3-loaded RyR2S/S, but not RyR2+/S or WT, atrial myocytes. The introduction of isoproterenol resulted in significant diastolic Ca2+ release in all three groups.ConclusionsThese findings establish acute atrial arrhythmogenic properties in RyR2-P2328S hearts and correlate these with altered Ca2+ homeostasis in an absence of repolarization abnormalities for the first time.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.