Abstract
The use of organophosphate pesticides is an integral part of commercial farming activities and these substances have been implicated as a major source of environmental contamination and may impact on a range of non-target fauna. The extent to which soil dwelling non-target organisms are affected by exposure to the organophosphate azinphos-methyl was investigated through monitoring selected biomarker responses and life cycle effects under laboratory conditions in the earthworm Eisenia andrei. Standard acute toxicity tests were conducted followed by a sequential exposure regime experiment, in order to assess the effects of multiple pesticide applications on biomarker (cholinesterase activity and neutral red retention time), life-cycle (growth and reproduction) and behaviour (avoidance and burrowing activity) responses. The present study indicates that the time between exposure events was a more important variable than concentration and that a longer interval between exposures may mitigate the effects of pesticide exposure provided that the exposure concentration is low. Additionally, it was shown that E. andrei was unable to avoid the presence of azinphos-methyl in soil, even at concentrations as high as 50% of the LC(50) value, indicating that the presence of azinphos-methyl in the soil pose a realistic threat to earthworms and other soil dwelling organisms. The ChE inhibition test showed a high percentage inhibition of the enzyme in all exposure groups that survived and NRR times of exposed organisms were lower than that of the controls. The present study yielded important results that contribute to the understanding of biological impacts of pesticide pollution on the environment. Extrapolating these results can aid in optimising pesticide application regimes to mitigate the environmental effects thereof and thus ensuring sustained soil biodiversity in agricultural areas.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.