Abstract

BackgroundIn Alzheimer’s disease, stroke and brain injuries, activated microglia can release proinflammatory cytokines, such as interleukin (IL)-1β. These cytokines may change astrocyte and neurotrophin functions, which influences neuronal survival and induces apoptosis. However, the interaction between neuroinflammation and neurotrophin functions in different brain conditions is unknown. The present study hypothesized that acute and subacute elevated IL-1β differentially modulates glial and neurotrophin functions, which are related to their role in neuroprotection and neurodegeneration.MethodRats were i.c.v. injected with saline or IL-1β for 1 or 8 days and tested in a radial maze. mRNA and protein expressions of glial cell markers, neurotrophins, neurotrophin receptors, β-amyloid precursor protein (APP) and the concentrations of pro- and anti-inflammatory cytokines were measured in the hippocampus.ResultsWhen compared to controls, memory deficits were found 4 days after IL-1 administrations, however the deficits were attenuated by IL-1 receptor antagonist (RA). Subacute IL-1 administrations increased expressions of APP, microglial active marker CD11b, and p75 neurotrophin receptor, and the concentration of tumor necrosis factor (TNF)-α and IL-1β, but decreased expressions of astrocyte active marker glial fibrillary acidic protein (GFAP), brain-derived neurotrophic factor (BDNF) and TrK B. By contrast, up-regulations of NGF, BDNF and TrK B expressions were found after acute IL-1 administration, which are associated with the increase in both glial marker expressions and IL-10 concentrations. However, TrK A was down-regulated by acute and up-regulated by subacute IL-1 administrations. Subacute IL-1-induced changes in the glial activities, cytokine concentrations and expressions of BDNF and p75 were reversed by IL-1RA treatment.ConclusionThese results indicate that acute and subacute IL-1 administrations induce different changes toward neuroprotection after acute IL-1 administrations but neurodegeneration after subacute ones.

Highlights

  • In Alzheimer’s disease, stroke and brain injuries, activated microglia can release proinflammatory cytokines, such as interleukin (IL)-1β

  • When compared to controls, memory deficits were found 4 days after IL-10 concentrations were significant (IL-1) administrations, the deficits were attenuated by IL-1 receptor antagonist (RA)

  • Up-regulations of nerve growth factor (NGF), brain-derived neurotrophic factor (BDNF) and Tyrosine kinase (TrK) B expressions were found after acute IL-1 administration, which are associated with the increase in both glial marker expressions and IL-10 concentrations

Read more

Summary

Introduction

In Alzheimer’s disease, stroke and brain injuries, activated microglia can release proinflammatory cytokines, such as interleukin (IL)-1β. These cytokines may change astrocyte and neurotrophin functions, which influences neuronal survival and induces apoptosis. In the last two decades, many studies have found that neuroinflammation is causally related to the onset and progress of several neurodegenerative disorders, including Alzheimer’s disease (AD). Increased microglial activity and pro-inflammatory cytokine releases may contribute to neuronal dysfunction and death in neurodegenerative diseases [1,2]. IL-1 administration to rodents has been popularly used as a model for studying the interaction between inflammation, brain functions, and memory deficits in neurodegenerative and psychiatric diseases [6,7]

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call