Abstract

ObjectiveHyperthermia uses exogenous heat induction as a cancer therapy. This work addresses the acute and long-term effects of hyperthermia in the highly metastatic melanoma cell line B16-F10.Materials and MethodsMelanoma cells were submitted to one heat treatment, 45°C for 30 min, and thereafter were kept at 37°C for an additional period of 14 days. Cultures maintained at 37°C were used as control. Cultures were assessed for the heat shock reaction.ResultsImmediately after the heat shock, cells began a process of fast degradation, and, in the first 24 h, cultures showed decreased viability, alterations in cell morphology and F-actin cytoskeleton organization, significant reduction in the number of adherent cells, most of them in a process of late apoptosis, and an altered gene expression profile. A follow-up of two weeks after heat exposure showed that viability and number of adherent cells remained very low, with a high percentage of early apoptotic cells. Still, heat-treated cultures maintained a low but relatively constant population of cells in S and G2/M phases for a long period after heat exposure, evidencing the presence of metabolically active cells.ConclusionThe melanoma cell line B16-F10 is susceptible to one hyperthermia treatment at 45°C, with significant induced acute and long-term effects. However, a low but apparently stable percentage of metabolically active cells survived long after heat exposure.

Highlights

  • Hyperthermia, a cancer therapy, uses exogenous heat induction as therapeutic agent [1]

  • Immediately after the heat shock, cells began a process of fast degradation, and, in the first 24 h, cultures showed decreased viability, alterations in cell morphology and F-actin cytoskeleton organization, significant reduction in the number of adherent cells, most of them in a process of late apoptosis, and an altered gene expression profile

  • The melanoma cell line B16-F10 is susceptible to one hyperthermia treatment at 45uC, with significant induced acute and long-term effects

Read more

Summary

Introduction

Hyperthermia, a cancer therapy, uses exogenous heat induction as therapeutic agent [1]. It can be used alone or as adjuvant to other therapies, especially chemotherapy and radiotherapy [2]. Hyperthermia localized techniques apply heat only to the tumour using electromagnetic energy ultrasounds [3]. The use of hyperthermia is controversial and presents significant technical challenges. Scientific reports show contradictory results relatively to hyperthermia therapeutic potential, some attesting its utility and others showing no effect. This is probably due to the lack of knowledge correlating the complex hyperthermic effects at cellular and tissue level [1]

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.