Abstract
Landing is a critical phase of movement for injury occurrence, in which lower limbs should be used equally to better absorb the shock. However, it has been suggested that fatigue can lead to the appearance of asymmetries. The aim of this study was to verify the acute and delayed effects of fatigue on the lower limb asymmetry indexes of peak ground reaction force, leg stiffness and intra-limb coordination during a landing task. Fifteen physically active men performed a fatigue protocol composed of 14 sets of 10 continuous vertical jumps, with a one-minute rest interval between the sets. A step-off landing task was performed before, immediately after, 24 h and 48 h after the fatigue protocol. Two force plates and a video analysis system were used. The symmetry index equation provided the asymmetry indexes. For statistical analysis, ANOVA and effect size analysis were utilized. Inferential statistics did not show the effect of fatigue in the asymmetry indexes for any variable or condition (p > .05). Moderate effect sizes were observed for peak ground reaction force (0.61) and leg stiffness (0.61) immediately after the application of the protocol. In conclusion, fatigue does not seem to significantly change the asymmetries of lower limbs, especially regarding intra-limb coordination. The moderate effects observed for peak ground reaction force and leg stiffness asymmetries suggest that these variables may be acutely affected by fatigue.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.