Abstract

Industrial wastes may produce leachates that can contaminate the aquatic ecosystem. Toxicity testing in acute and chronic levels is essential to assess environmental risks from the soluble fractions of these wastes, since only chemical analysis may not be adequate to classify the hazard of an industrial waste. In this study, ten samples of solid wastes from textile, metal-mechanic, and pulp and paper industries were analyzed by acute and chronic toxicity tests with Daphnia magna and Vibrio fischeri. A metal-mechanic waste (sample MM3) induced the highest toxicity level to Daphnia magna(CE50,48 h = 2.21%). A textile waste induced the highest toxicity level to Vibrio fischeri (sample TX2, CE50,30 min = 12.08%). All samples of pulp and paper wastes, and a textile waste (sample TX2) induced chronic effects on reproduction, length, and longevity of Daphnia magna. These results could serve as an alert about the environmental risks of an inadequate waste classification method.

Highlights

  • Industrial processes generate wastes that must be adequately treated before final disposal, since the environmental risk involved is very important

  • Taking into account the great production of solid waste in industrial activities and the environmental risk involved in its generation, treatment, and disposal, this study aims to assess the acute and chronic toxicity of soluble fraction of industrial waste samples using the test organisms Daphnia magna and Vibrio fischeri

  • Chemical analysis confirms the presence of toxic components in the soluble fractions of all wastes analyzed, but the results of bioassays show that they induced varied toxicity effects to both Daphnia magna and Vibrio fischeri

Read more

Summary

Objectives

Taking into account the great production of solid waste in industrial activities and the environmental risk involved in its generation, treatment, and disposal, this study aims to assess the acute and chronic toxicity of soluble fraction of industrial waste samples using the test organisms Daphnia magna and Vibrio fischeri

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call