Abstract
Apart from enhancing red blood cell production, erythropoietin (Epo) has been shown to modulate the ventilatory response to reduced oxygen supply. Both functions are crucial for the organism to cope with increased oxygen demand. In the present work, we analyzed the impact of Epo and the resulting excessive erythrocytosis in the neural control of normoxic and hypoxic ventilation. To this end, we used our transgenic mouse line (Tg6) that shows high levels of human Epo in brain and plasma, the latter leading to a hematocrit of approximately 80%. Interestingly, while normoxic and hypoxic ventilation in Tg6 mice was similar to WT mice, Tg6 mice showed an increased respiratory frequency but a decreased tidal volume. Knowing that Epo modulates catecholaminergic activity, the altered catecholaminergic metabolism measured in brain stem suggested that the increased respiratory frequency in Tg6 mice was related to the overexpression of Epo in brain. In the periphery, higher response to hyperoxia (Dejours test), as well as reduced tyrosine hydroxylase activity in carotid bodies, revealed a higher chemosensitivity to oxygen in transgenic mice. Moreover, in line with the decreased activity of the rate-limiting enzyme for dopamine synthesis, the intraperitoneal injection of a highly specific peripheral ventilatory stimulant, domperidone, did not stimulate hypoxic ventilatory response in Tg6 mice. These results suggest that high Epo plasma levels modulate the carotid body's chemotransduction. All together, these findings are relevant for understanding the cross-talk between the ventilatory and erythropoietic systems exposed to hypoxia.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: American Journal of Physiology-Regulatory, Integrative and Comparative Physiology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.