Abstract

Toluene is a widely used industrial organic solvent and is ubiquitous in our environment. The neurobehavioral and neurotoxic effects of toluene are well recognized; however, its genotoxicity is still under discussion. Toluene biotransformation leads to the generation of reactive oxygen species that cause oxidative stress and DNA damages. Individuals with different immunogenetic backgrounds have different sensitivities to toxic chemical exposure. Previous studies have suggested that allergic stimulation may influence the threshold for toluene sensitivity due to the modulation of neurotrophin-related genes. Therefore, we aimed to investigate toluene-induced genotoxicity in different brain regions following acute and chronic exposure in vivo and to further examine whether allergic stimulation may influence the sensitivity to toluene-induced genotoxicity. In this present study, we found that exposure of toluene induced oxidative DNA damages resulting in genotoxicity in different brain regions including cortex, cerebellum, and hippocampus using comet assay. Higher genotoxicity induced by toluene was observed in the hippocampus of control mice compared to OVA-immunized mice. These results provide evidence that toluene-induced genotoxicity may contribute to its neurotoxicity in different immunogenetic individuals.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.