Abstract

Sprouting of peptidergic nociceptive and descending supraspinal projections to the dorsal horn following spinal cord injury (SCI) has been proposed as a mechanism of neuropathic pain. To identify structural changes that could initiate or maintain SCI pain, we used a complete transection model in rats to examine how structural remodeling in the dorsal horn rostral to the lesion relates to distance from injury, laminar region, and duration of injury. The major classes of C-fiber primary afferents differed greatly in their susceptibility to structural and chemical changes and their ability to undergo plasticity. Peptidergic primary afferents showed a widespread loss throughout the dorsal horn of segments approaching the injury site. Some of this loss may have been due to decreased neuropeptide expression. The reduction in peptidergic fibers was transient, indicating compensatory sprouting and perhaps also increased neuropeptide expression within the cord. Nonpeptidergic afferents expressing GFRalpha1 were largely unaffected by SCI. In contrast, in GFRalpha2-expressing nonpeptidergic afferents SCI caused a permanent loss of dorsal horn innervation. Unexpectedly, GFRalpha2 was transiently induced throughout deeper laminae but this was not due to upregulation of GFRalpha2 in dorsal root ganglia. We also observed permanent sprouting of catecholamine terminals of supraspinal origin. This was restricted to the superficial laminae. Our results show that SCI caused a loss of sensory input as well as structural remodeling such that the balance of nociceptive inputs and descending modulation was permanently altered. These changes may contribute to mechanisms rostral to the site of SCI that trigger and maintain neuropathic pain.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.