Abstract

Glucose metabolism is impaired in brain aging and several neurological conditions. Beneficial effects of ketones have been reported in the context of protecting the aging brain, however, their neurophysiological effect is still largely uncharacterized, hurdling their development as a valid therapeutic option. In this report, we investigate the neurochemical effect of the acute administration of a ketone d-beta-hydroxybutyrate (D-βHB) monoester in fasting healthy participants with ultrahigh-field proton magnetic resonance spectroscopy (MRS). In two within-subject metabolic intervention experiments, 7 T MRS data were obtained in fasting healthy participants (1) in the anterior cingulate cortex pre- and post-administration of D-βHB (N = 16), and (2) in the posterior cingulate cortex pre- and post-administration of D-βHB compared to active control glucose (N = 26). Effect of age and blood levels of D-βHB and glucose were used to further explore the effect of D-βHB and glucose on MRS metabolites. Results show that levels of GABA and Glu were significantly reduced in the anterior and posterior cortices after administration of D-βHB. Importantly, the effect was specific to D-βHB and not observed after administration of glucose. The magnitude of the effect on GABA and Glu was significantly predicted by older age and by elevation of blood levels of D-βHB. Together, our results show that administration of ketones acutely impacts main inhibitory and excitatory transmitters in the whole fasting cortex, compared to normal energy substrate glucose. Critically, such effects have an increased magnitude in older age, suggesting an increased sensitivity to ketones with brain aging.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call