Abstract
Recent evidence indicates that the polysialylated neural cell adhesion molecule (PSA-NCAM) is involved in hippocampal plasticity. On the other hand, CB1 receptor activation is known to disturb some hippocampal processes involving plastic changes, such as learning and memory. Therefore, the present study investigated the effect of HU-210, a CB1 receptor agonist, on the expression of PSA-NCAM protein in the dentate gyrus (DG) and CA3 region of the rat hippocampus. It was found that at a dose of 0.1 mg/kg i.p. of HU-210, the number of PSA-NCAM immunoreactive (IR) cells in the DG declined in a time-dependent manner. The decrease in PSA-NCAM expression was observed at 1 and 2 days (ca. 21% and 30%, respectively), but not after 4 h and 4 days following HU-210 administration. However, HU-210 treatment did not change the length density of PSA-NCAM immunopositive processes in CA3 mossy fibers at all the time points measured. The effect observed in the DG on day 2 was blocked by AM-251 (1 mg/kg, i.p.), a CB1 receptor antagonist, given 30 min before HU-210. Neither the number of Ki-67 (IR) cells (a marker of proliferation) nor the number of doublecortin-IR cells (a marker of immature neurons) was affected by HU-210 (0.1 mg/kg, i.p.) treatment at any of the time points. An analysis of co-localization of CB1 receptor protein with PSA-NCAM protein revealed that both proteins were not present in the same population of neurons in the subgranular layer of the DG. The observed changes in PSA-NCAM expression were not related to the reduction of proliferation or differentiation of newly born cells, but were possible due to alternations in the synaptic activity in the DG. However, such alteration in the PSA-NCAM expression may change the timing of the functional maturation of newly born neurons. Moreover, the above finding suggests that acute activation of CB1 receptors may result in the stiffening of the hippocampal structure and susceptibility to plastic changes and may lead to functional impairment governed by alterations in the hippocampal structure.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.