Abstract

During hemodynamic stress, catecholamines and neurohumoral stimuli may induce co-activation of G(q)-coupled receptors and β-adrenergic receptors (β-AR), leading to cardiac remodeling. Dynamic regulation of histone deacetylase 5 (HDAC5), a transcriptional repressor, is crucial during stress signaling due to its role in epigenetic control of fetal gene markers. Little is known about its regulation during acute and chronic β-AR stimulation and its cross-interaction with G(q) signaling in adult cardiac myocytes. Here, we evaluate the potential cross-talk between G(q)-driven and β-AR mediated signaling at the level of nucleocytoplasmic shuttling of HDAC5. We show the translocation of GFP-tagged wild type HDAC5 or mutants (S279A and S279D) in response to β-AR or G(q) agonists. Isoproterenol (ISO) or PKA activation results in strong nuclear accumulation of HDAC5 in contrast to nuclear export driven by Ca(2+)-calmodulin protein kinase II and protein kinase D. Moreover, nuclear accumulation of HDAC5 under acute ISO/PKA signaling is dependent on phosphorylation of Ser-279 and can block subsequent G(q)-mediated nuclear HDAC5 export. Intriguingly, the attenuation of G(q)-induced export is abolished after chronic PKA activation, yet nuclear HDAC5 remains elevated. Last, the effect of chronic β-AR signaling on HDAC5 translocation was examined in adult myocytes from a rabbit model of heart failure, where ISO-induced nuclear import is ablated, but G(q)-agonist mediated export is preserved. Acute β-AR/PKA activation protects against hypertrophic signaling by delaying G(q)-mediated transcriptional activation. This serves as a key physiological control switch before allowing genetic reprogramming via HDAC5 nuclear export during more severe stress, such as heart failure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.