Abstract

BackgroundAcupuncture has been applied to aid in the recovery of post-stroke patients, but its mechanism is unclear. This study aims to analyze the relationship between acupuncture and glucose metabolism in cerebral functional regions in post-stroke patients using 18 FDG PET-CT techniques. Forty-three ischemic stroke patients were randomly divided into 5 groups: the Waiguan (TE5) needling group, the TE5 sham needling group, the sham point needling group, the sham point sham needling group and the non-needling group. Cerebral functional images of all patients were then acquired using PET-CT scans and processed by SPM2 software.ResultsCompared with the non-needling group, sham needling at TE5 and needling/sham needling at the sham point did not activate cerebral areas. However, needling at TE5 resulted in the activation of Brodmann Area (BA) 30. Needling/sham needling at TE5 and needling at the sham point did not deactivate any cerebral areas, whereas sham needling at the sham point led to deactivation in BA6. Compared with sham needling at TE5, needling at TE5 activated BA13, 19 and 47 and did not deactivate any areas. Compared with needling at the sham point, needling at TE5 had no associated activation but a deactivating effect on BA9.ConclusionNeedling at TE5 had a regulating effect on cerebral functional areas shown by PET-CT, and this may relate to its impact on the recovery of post-stroke patients.

Highlights

  • Acupuncture has been applied to aid in the recovery of post-stroke patients, but its mechanism is unclear

  • Comparison between true and non-needling at TE5 Compared with non-needling, needling at TE5 resulted in activation of BA30, whereas sham needling at TE5 and needling/sham needling at the sham point did not lead to any cerebral activation

  • Needling/sham needling at TE5 and needling at the sham point did not deactivate any cerebral areas, but sham needling at the sham point led to a deactivation of BA6 (Table 1 and Figures 1 and 2)

Read more

Summary

Introduction

Acupuncture has been applied to aid in the recovery of post-stroke patients, but its mechanism is unclear. This study aims to analyze the relationship between acupuncture and glucose metabolism in cerebral functional regions in post-stroke patients using 18 FDG PET-CT techniques. We focused on cerebral functional imaging because it enables observation of the real-time effects of acupoint needling and the reactions of functional brain regions in humans instead of in the animal brain. Needling can result in activation patterns that closely relate to areas involved with the treatment of depression, vascular dementia, rheumatoid arthritis, functional dyspepsia and Parkinson’s disease [9,10,15,16,17,18]. The response of the brain to needling at a single acupoint and needling at acupoints in different meridians or different regions has been studied [19,20,21,22,23,24,25,26] and compared with true, sham and different manipulations of needling [27,28,29,30]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.