Abstract
An important unresolved problem in the attitude and shape control of future large flexible spacecraft is the determination of appropriate locations throughout the flexible vehicle for placement of control system actuators. In a separate work a definition of the degree of controllability was generated for this purpose when the control objective was to return the spacecraft to the desired equilibrium configuration after any disturbance. In some potential space missions the objective will require angular slewing maneuvers of a flexible structure. The optimum actuator locations should be significantly different for this objective. In this paper, concepts of the degree of controllability of a control system for performing standard maneuvers are developed from basic physical considerations, and then numerical methods for generating the degree of controllability are developed. These results offer the control system designer a method of evaluating the effectiveness of candidate actuator distributions. The method is shown to take on a relatively simple form when spacecraft modal coordinates are used.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.