Abstract

Paraboloidal shells of revolution are commonly used in communication systems, precision opto-mechanical systems and aerospace structures. This study is to investigate the precision distributed control effectiveness of adaptive paraboloidal shells laminated with segmented actuator patches. Mathematical models of the paraboloidal shells laminated with distributed actuator layers subjected to mechanical, temperature, and control forces are presented first. Then, formulations of distributed actuating forces with their contributing micro-meridional/circumferential membrane and bending components are derived using an assumed mode shape function. Studies of actuator placements, actuator induced control forces, micro-contributing components, and normalized actuation authorities of paraboloidal shells are carried out. These forces and membrane/bending components basically exhibit distinct modal characteristics influenced by shell geometries and other design parameters. Analyses suggest that the membrane-contributed components dominate the overall control effect. Locations with larger normalized forces indicate the areas with high control efficiencies, i.e., larger induced actuation force per unit actuator area. With limited actuators, placing actuators at those locations would lead to the maximal control effects of paraboloidal shells.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.