Abstract
In this article we present an actuator fault-tolerant control architecture for the attitude and altitude tracking problem of multirotor aircrafts, under the effects of unknown drag coefficients and external wind. The tracking problem is faced by splitting it into two sub-problems, namely control law and control allocation. The control law is designed in terms of desired forces and moments which should act on the system, it does permit to exploit possible estimations of the disturbances acting on the vehicle and does not depend on the multirotor configuration. The control allocation, instead, optimally solves the redistribution of the control efforts among the motors according to the specific multirotor configuration, moreover it can actively cope with actuator faults whenever their estimations are available. Numerical simulations based on realistic scenarios confirm that the control architecture permits to solve the attitude and altitude tracking problem, despite the effects of faults and disturbances on the system.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.