Abstract

Helicopter unmanned aerial vehicle (HUAV) are an ideal platform for academic researchs. Abilities of this vehicle to take off and landing vertically while performing hover flight and various flight maneuvers have made them proper vehicles for a wide range of applications. This paper suggests a model-based fault detection and isolation for HUAV in hover mode. Moreover in HUAV, roll, pitch and yaw actuator faults are coupled and affect each other, hence, we need a method that decouples them and also separates fault from disturbance. For this purpose, a robust unknown input observer (UIO) is designed to detect bias fault and also catastrophic fault such as stuck in actuators of HUAV. The robust UIO isolates roll and pitch actuator faults from yaw actuator fault. The novelty of this manuscript is the design of two UIO observers to detect and decouple the faults of helicopter actuators, one for lateral and longitudinal actuators and the other for pedal actuator. Also, the proposed method is compared with extended Kalman filter (EKF). Simulation results show effectiveness of the proposed method for detection and isolation of actuator faults with less number of observers and it is able to decouple fault and disturbance effects.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.