Abstract
The attitude control problem of a rigid satellite with actuator failure uncertainties and external disturbance is addressed using adaptive control method. A discontinuous adaptive failure compensation controller, using unit quaternion and angular velocities feedback, is designed to accommodate the external disturbance and actuator failures which are uncertain in time instants, values and patterns. A common approximate function is used to avoid system chattering caused by such discontinuous control laws. The parameters of external disturbance and failure uncertainties are estimated directly by adaptive laws, and the desired stability and output tracking properties of the adaptive control system are analyzed. Finally, simulation results of a rigid satellite with six reaction wheels are presented to illustrate the performance of the proposed adaptive actuator failure compensation scheme.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.