Abstract
A novel actuator disk model (ADM) coupled with lifting-line theory is proposed in this paper. Several virtual planform blades are placed on a disk plane with a constant azimuthal interval, and the lifting-line theory is applied to each blade to predict the effective angle of attack. The proposed model considers the local lift and drag forces acting on disk surface cells by interpolating the predicted effective angle of attack with various azimuth angles to the actuator disk plane; therefore, the proposed model considers individual blade tip vortices without tip loss functions. Experimental data for hover and forward flight rotors are used to validate the proposed model. For hovering flight, sectional thrust based on collective pitch angles predicted by the modified ADM was similar to that obtained in the experiments. For forward flight, the inflow above the rotor estimated by the proposed ADM was similar to that obtained in the experiments and by using other numerical methods. Thus, the developed ADM can be used for rotor performance analysis under the main flight conditions of V/STOL.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.