Abstract

By applying an electric field to a transducer based on dielectric electroactive polymers (DEAP) a relatively high amount of deformation with considerable force generation is achieved. Due to their unique features DEAP-transducers are a promising alternative for conventional actuator systems based on the electromagnetic principle. To maximize the force or absolute deformation of a DEAP-based actuator multilayer technologies are favorable. Although these actuators recently gained a lot of interest, the development of automated manufacturing processes for such transducers are still at a very early stage. Therefore, the authors present the conceptual design and realization of a novel automated process based on pre-fabricated elastomer material for manufacturing DEAP-based multilayer stack-actuators with homogeneous and reproducible properties. For this purpose, the specific design and topology of the conceptualized multilayer stack-actuator from a single layer actuator film towards the encapsulation of the stacked multilayer actuator is explained in a first step. Due to its smart design, advantageous features like safety fuses can be integrated in these multilayer actuators. Furthermore, for its design and optimal integration in various applications a multiphysics FE model is proposed. Afterwards, the manufacturing process consisting of several sub-processes is presented in detail. The quality of the developed process and the proposed FE model is demonstrated by an experimental validation of several manufactured multilayer DEAP stack-actuators made from polyurethane and silicone. Finally, the obtained results are concluded and an outlook concerning an improved actuator characteristic based on a material optimization is given.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.