Abstract
Drag reduction of an actuated turbulent boundary layer at a momentum-thickness-based Reynolds number Re${}_{\ensuremath{\theta}}$ = 1000 is computed, modeled, and predicted. The drag reduction for the set of actuation parameters is modeled using 71 large-eddy simulations. This drag model allows extrapolation outside the actuation domain for larger wavelengths and amplitudes. The modeling novelty combines support vector regression for interpolation, a parametrized ridgeline leading out of the data domain, a scaling for the drag reduction, and a discovered self-similar structure of the actuation effect.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.