Abstract

The actuation stiffness of a set of steel Kagome Double-Layer Grid (KDLG) structures with brazed joints is measured experimentally and compared with predictions by the finite element method. The predicted actuation stiffnesses for the perfect KDLGs much exceed the measured values, and it is argued that the low values of observed actuation stiffness are due to the presence of geometric imperfections introduced during manufacture. In order to assess the significance of geometric defects upon actuation stiffness, finite element calculations are performed on structures with a stochastic dispersion in nodal position from the perfectly periodic arrangement, and on structures with wavy bars. It is found that bar waviness has the dominant effect upon the actuation stiffness. The predicted actuation stiffness for the imperfect structures are in satisfactory agreement with the measured values assuming the same level of imperfection between theory and experiment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call