Abstract

An alternate approach to exciting a one-dimensional structure with discontinuities using a piezoelectric actuator is presented and examined. Instead of being bonded to the uniform side of a beam, the piezoelectric actuator is attached such that it spans two adjacent rib discontinuities. In this configuration, the actuator generates an eccentric actuation force on the structure and induces both axial and transverse motions. The goal of this work is to first model the axial and transverse response caused by the piezoelectric actuator. Then, the change in that response is examined for the case where an external disturbance force is present. The system is modeled by coupling the piezoelectric strain and structural dynamic response. The characteristics of the voltage-generated piezoelectric forces are discussed through numerical examples. The structural response found using the dynamic force–voltage model for the actuator is then compared to the response when the actuator model is approximated by its static or zero-frequency value. Furthermore, the ability of the actuator to potentially provide better control authority by using this alternate configuration is examined. The numerical study shows that when the actuator spans two discontinuities, there is potential for greater control authority than when that same actuator is placed on the uniform side of the structure.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.