Abstract

Actuation failure is one of the causes of loss of control in flight accidents. Aircraft usually have multiple redundant actuators to mitigate failures, and Failure Detection and Isolation Systems (FDIS) are used to diagnose failures and reconfigure software/hardware to enhance safety. However, the large number of redundant actuators interferes with the FDIS. To detect and isolate failures in fixed-wing aircraft with redundant actuators, this work proposes the combined use of two different strategies of the Two-Stage Kalman Filter. A Supervisory Loop is included using heuristics and statistics to diagnose the actuators, and a Feed-Forward Differential is implemented to improve the isolation process without interfering with the aircraft flight. The solution is evaluated in the detection of an aileron failure in a Boeing 747 simulator.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call