Abstract
Multispectral imaging using Unmanned Aerial Vehicles (UAVs) has changed the pace of precision agriculture. Actual evapotranspiration (ETa) from the very high spatial resolution of UAV images over agricultural fields can help farmers increase their production at the lowest possible cost. ETa estimation using UAVs requires a full package of sensors capturing the visible/infrared and thermal portions of the spectrum. Therefore, this study focused on a multi-sensor data fusion approach for ETa estimation (MSDF-ET) independent of thermal sensors. The method was based on sharpening the Landsat 8 pixels to UAV spatial resolution by considering the relationship between reference ETa fraction (ETrf) and a Vegetation Index (VI). Four Landsat 8 images were processed to calculate ETa of three UAV images over three almond fields. Two flights coincided with the overpasses and one was in between two consecutive Landsat 8 images. ETrf was chosen instead of ETa to interpolate the Landsat 8-derived ETrf images to obtain an ETrf image on the UAV flight. ETrf was defined as the ratio of ETa to grass reference evapotranspiration (ETr), and the VIs tested in this study included the Normalized Difference Vegetation Index (NDVI), Soil Adjusted Vegetation Index (SAVI), Enhanced Vegetation Index (EVI), Normalized Difference Water Index (NDWI), and Land Surface Water Index (LSWI). NDVI performed better under the study conditions. The MSDF-ET-derived ETa showed strong correlations against measured ETa, UAV- and Landsat 8-based METRIC ETa. Also, visual comparison of the MSDF-ET ETa maps was indicative of a promising performance of the method. In sum, the resulting ETa had a higher spatial resolution compared with thermal-based ETa without the need for the Albedo and hot/cold pixels selection procedure. However, wet soils were poorly detected, and in cases of continuous cloudy Landsat pixels the long interval between the images may cause biases in ETa estimation from the MSDF-ET method. Generally, the MSDF-ET method reduces the need for very high resolution thermal information from the ground, and the calculations can be conducted on a moderate-performance computer system because the main image processing is applied on Landsat images with coarser spatial resolutions.
Highlights
The world population is projected to reach 9.7 billion by 2050 [1]
METRIC was applied to both satellite and Unmanned Aerial Vehicles (UAVs) images
We made an effort to discuss the reasons behind the errors that occurred in both UAV and Landsat 8 results
Summary
Satisfying the food demand of such a population is a big challenge. FAO estimated that food production needs to double by 2050, which would require a massive amount of water. The challenge is that water is already scarce and agriculture alone accounts for more than 70% of total freshwater withdrawals [2]. There is an urgent need to produce more food with less water, which can only be achieved by improving water use efficiency in the largest water consuming sector. Current remote sensing technologies provide an opportunity to monitor water consumption over large areas in a cost-effective way. They offer an important decision support tool with lots of potential for growers and stakeholders
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.