Abstract

Evapotranspiration is an important parameter to evaluate soil water deficit and water use efficiency, especially in locations with irregularly distributed precipitation. The aim of this study was to assess the daily actual evapotranspiration (ETa) estimated by the Thornthwaite and Mather soil water balance adapted for crops (ThM) and by the dual Kc method with the crop coefficients optimized from inverse modeling and by the adjustment suggested in the FAO-56 bulletin. The models were optimized and evaluated with actual evapotranspiration determined by the Bowen ratio – energy balance method (ETβ) for sugarcane at full canopy closure grown in Alagoas state, northeastern Brazil. The objective function of the inverse problem was defined in terms of ETβ and ETa estimated by the ThM or dual Kc method by optimizing the single crop coefficient (Kc) and the basal crop coefficient Kcb, respectively. Optimized Kc (1.05) and Kcb (1.03) were lower than those adjusted by the Kc FAO56 method (Kc = 1.25 or Kcb = 1.20), with optimized Kc slightly higher than the Kc obtained experimentally (1.01 ± 0.08). ETa estimated by the ThM and dual Kc method with optimized crop coefficients had similar high precision (r2 > 0.79) and accuracy (dm > 0.93 and RMSE < 0.30 mm d−1). However, using the coefficients adjusted from the FAO56 method overestimated ETa in both models.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call