Abstract

Recurrence and metastasis are the major causes of pancreatic ductal adenocarcinoma (PDAC) mortality after treatment. The underlying molecular mechanism is poorly understood. Actin-related protein 3 (ACTR3) is an important component of the actin-related protein 2/3 complex, which is involved in the regulation of cell motility and epithelial mesenchymal transition (EMT) process. Previously published studies have indicated that ACTR3 expression is upregulated in several types of cancers, and promotes tumor development, including gastric cancer and hepatocellular carcinoma. However, to date, the expression levels and the role of ACTR3 in PDAC are not well understood. In the present study, the expression levels of ACTR3 in PDAC tissue and the relationship of ACTR3 expression with clinical prognosis were analyzed by mRNA microarray and bioinformatics. The biological functions and underlying mechanism of ACTR3 in PDAC were examined by a series of assays, including Cell Counting Kit-8 (CCK-8), transwell assay, and Western blotting. We found that the expression of ACTR3 was significantly increased in PDAC tissues and cell lines. A higher expression of ACTR3 was predictive of poor outcome for patients with PDAC. In vitro, the knockdown of ACTR3 expression significantly inhibited the invasive and migratory capacity of PDAC cells, and altered the distribution of F-actin and the expression of EMT markers. The findings of our study indicated that ACTR3 promotes cell migration and invasion by inducing EMT in PDAC, which may be a potential therapeutic target and prognostic indicator for PDAC patients.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call