Abstract
We consider the problem of control of hierarchical Markov decision processes and develop a simulation based two-timescale actor-critic algorithm in a general framework. We also develop certain approximation algorithms that require less computation and satisfy a performance bound. One of the approximation algorithms is a three-timescale actor-critic algorithm while the other is a two-timescale algorithm, however, which operates in two separate stages. All our algorithms recursively update randomized policies using the simultaneous perturbation stochastic approximation (SPSA) methodology. We briefly present the convergence analysis of our algorithms. We then present numerical experiments on a problem of production planning in semiconductor fabs on which we compare the performance of all algorithms together with policy iteration. Algorithms based on certain Hadamard matrix based deterministic perturbations are found to show the best results.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.