Abstract
RPL-Routing Protocol for Low-Power and Lossy Networks (usually pronounced "ripple")-is the de facto standard for IoT networks. However, it neglects to exploit IoT devices' full capacity to optimize their transmission power, mainly because it is quite challenging to do so in parallel with the routing strategy, given the dynamic nature of wireless links and the typically constrained resources of IoT devices. Adapting the transmission power requires dynamically assessing many parameters, such as the probability of packet collisions, energy consumption, the number of hops, and interference. This paper introduces Adaptive Control of Transmission Power for RPL (ACTOR) for the dynamic optimization of transmission power. ACTOR aims to improve throughput in dense networks by passively exploring different transmission power levels. The classic solutions of bandit theory, including the Upper Confidence Bound (UCB) and Discounted UCB, accelerate the convergence of the exploration and guarantee its optimality. ACTOR is also enhanced via mechanisms to blacklist undesirable transmission power levels and stabilize the topology of parent-child negotiations. The results of the experiments conducted on our 40-node, 12-node testbed demonstrate that ACTOR achieves a higher packet delivery ratio by almost 20%, reduces the transmission power of nodes by up to 10 dBm, and maintains a stable topology with significantly fewer parent switches compared to the standard RPL and the selected benchmarks. These findings are consistent with simulations conducted across 7 different scenarios, where improvements in end-to-end delay, packet delivery, and energy consumption were observed by up to 50%.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.