Abstract

Despite intense efforts to elucidate the molecular mechanisms that determine the maximum shortening velocity and the shape of the force-velocity relationship in striated muscle, our understanding of these mechanisms remains incomplete. Here, this issue is addressed by means of a four-state cross-bridge model with significant explanatory power for both shortening and lengthening contractions. Exploration of the parameter space of the model suggests that an actomyosin-ADP state (AM∗ADP) that is separated from the actual ADP release step by a strain-dependent isomerization is important for determining both the maximum shortening velocity and the shape of the force-velocity relationship. The model requires a velocity-dependent, cross-bridge attachment rate to account for certain experimental findings. Of interest, the velocity dependence for shortening contraction is similar to that for population of the AM∗ADP state (with a velocity-independent attachment rate). This accords with the idea that attached myosin heads in the AM∗ADP state position the partner heads for rapid attachment to the next site along actin, corresponding to the apparent increase in attachment rate in the model.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.