Abstract
Advances in fluorescence microscopy and tissue-clearing have revolutionised 3D imaging of fluorescently labelled tissues, organs and embryos. However, the complexity and high cost of existing software and computing solutions limit their widespread adoption, especially by researchers with limited resources. Here, we present Acto3D, an open-source software, designed to streamline the generation and analysis of high-resolution 3D images of targets labelled with multiple fluorescent probes. Acto3D provides an intuitive interface for easy 3D data import and visualisation. Although Acto3D offers straightforward 3D viewing, it performs all computations explicitly, giving users detailed control over the displayed images. Leveraging an integrated graphics processing unit, Acto3D deploys all pixel data to system memory, reducing visualisation latency. This approach facilitates accurate image reconstruction and efficient data processing in 3D, eliminating the need for expensive high-performance computers and dedicated graphics processing units. We have also introduced a method for efficiently extracting lumen structures in 3D. We have validated Acto3D by imaging mouse embryonic structures and by performing 3D reconstruction of pharyngeal arch arteries while preserving fluorescence information. Acto3D is a cost-effective and efficient platform for biological research.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.