Abstract

Activity-dependent fluctuations in axonal excitability and changes in interspike intervals modify the conduction of trains of action potentials in unmyelinated peripheral nerve fibers. During inflammation of a nerve trunk, long stretches of axons are exposed to inflammatory mediators such as 5-hydroxytryptamine [5-HT]. In the present study, we have tested the effects of m-chlorophenylbiguanide (mCPBG), an agonist at the 5-HT(3) serotonin receptor, on activity- and potential-dependent variations in membrane threshold and conduction velocity of unmyelinated C-fiber axons of isolated rat sural nerve segments. The increase in axonal excitability during application of mCPBG was much stronger at higher frequencies of action potentials and/or during axonal membrane hyperpolarization. The effects on the postspike recovery cycle also depended on the rate of stimulation. At an action potential frequency of 1 Hz or in hyperpolarized axons, mCPBG produced a loss of superexcitability. In contrast, at 0.33 Hz, a small increase in the postspike subexcitability was observed. Similar effects on excitability changes were found when latency instead of threshold was recorded, but only at higher action potential frequencies: at 1.8 Hz, mCPBG increased conduction velocity and reduced postspike supernormality. The latter effect would increase the interspike interval if pairs of action potentials were conducted along several cm in an inflamed nerve trunk. These data indicate that activation of axonal 5-HT(3) receptors not only enhances membrane excitability but also modulates action potential trains in unmyelinated, including nociceptive, nerve fibers at high impulse rates.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call