Abstract

Plasticity of the developing visual system has been regarded as the best model for changes of neuronal connections under the influence of the environment. N-methyl-D-aspartate (NMDA) receptors are crucial for experience-dependent synaptic modifications that occur in the developing visual cortex. NMDA-mediated excitatory postsynaptic currents (EPSCs) in layer IV neurons of the visual cortex lasted longer in young rats than in adult rats, and the duration of the EPSCs became progressively shorter, in parallel with the developmental reduction in synaptic plasticity. This decrease in NMDA receptor-mediated EPSC duration is delayed when the animals are reared in the dark, a condition that prolongs developmental plasticity, and is prevented by treatment with tetrodotoxin, a procedure that inhibits neural activity. Application of L-glutamate to outside-out patches excised from layer IV neurons of young, but not of adult, rats activated prolonged bursts of NMDA channel openings. A modification of the NMDA receptor gating properties may therefore account for the age-dependent decline of visual cortical plasticity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call