Abstract

An integrated geochemical analysis of the well-exposed Pine Creek, California tungsten skarn deposit has been undertaken to evaluate changes in chemical gradients across various lithologies. Thermodynamic calculations using available experimental and thermodynamic data allow limits to be assigned to the activities of important chemical components in the metasomatic environment. Quantifiable changes in “non-volatile” component activites (CaO, MgO, Al2O3, Fe2O3, WO3) and in fugacities (O2, F2) have been traced across the system. The activities of Al2O3, Fe2O3 and WO3 generally increase from the marble (<102, <10−6, <10−5 respectively), through the outer skarn zone and into the massive garnet skarn (10−1.7±0.3, 10−3.4±0.4, 10−4.8±0.1) While CaO and MgO activities decrease for the same traverse from 10−5 and 10−2.1±1 respectively, to <10−5.7 and <10−3. Calculated oxygen fugacities are 10−23.5+1.0 at T=800 K (527° C), about one log unit below QFM, and more reducing than that required by Mt-Py-Po. The high variance of the garnet-pyroxene-quartz assemblages adds sufficient uncertainty to the calculated activities for individual specimens that only the large-scale trends survive the small-scale scatter. None of the chemical variables emerge as major independent or controlling factors for the mineralogy or phase compositions. Changes in the activity of one component may be offset by compensatory changes in another resulting in an environment that, while different from Pine Creek, could still host scheelite mineralization. Mass balance calculations indicate that the exposed endoskarn cannot have supplied the necessary chemical components to convert the country rock to skarn.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.