Abstract

Understanding the functional links between the stability and reactivity of oxide materials during the oxygen evolution reaction (OER) is one key to enabling a vibrant hydrogen economy capable of competing with fossil fuel-based technologies. In this work, by focusing on the surface chemistry of monometallic Ru oxide in acidic and alkaline environments, we found that the kinetics of the OER are almost entirely controlled by the stability of the Ru surface atoms. The same activity-stability relationship was found for more complex, polycrystalline and single-crystalline SrRuO(3) thin films in alkaline solutions. We propose that the electrochemical transformation of either water (acidic solutions) or hydroxyl ions (alkaline solutions) to di-oxygen molecules takes place at defect sites that are inherently present on every electrode surface. During the OER, surface defects are also created by the corrosion of the Ru ions. The dissolution is triggered by the potential-dependent change in the valence state (n) of Ru: from stable but inactive Ru(4+) to unstable but active Ru(n>4+). We conclude that if the oxide is stable then it is completely inactive for the OER. A practical consequence is that the best materials for the OER should balance stability and activity in such a way that the dissolution rate of the oxide is neither too fast nor too slow.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call