Abstract
We explore by extensive mutagenesis regions in the sequence allowing reversal of the allosteric response of Tet repressor. The wild type requires anhydrotetracycline for induction. About 100 mutants are presented, which, in contrast, require the drug for repression. Their mutations are clustered at the interface of the DNA- and inducer-binding domains. This interface consists of a central hydrophobic region surrounded by several hydrogen bonds. While most of the mutants described here contain two to five mutations, we found five positions in this region of TetR, at which single amino acid exchanges lead to activity reversal. They may disrupt the hydrogen-bonding network bordering the domain interface. We assume that the mutations cause a repositioning of the DNA reading head with respect to the effector binding core so that the same conformational change can result in opposite activities.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.