Abstract
Activity recognition aims to provide accurate and opportune information on people’s activities by leveraging sensory data available in today’s sensory rich environments. Nowadays, activity recognition has become an emerging field in the areas of pervasive and ubiquitous computing. A typical activity recognition technique processes data streams that evolve from sensing platforms such as mobile sensors, on body sensors, and/or ambient sensors. This article surveys the two overlapped areas of research of activity recognition and data stream mining. The perspective of this article is to review the adaptation capabilities of activity recognition techniques in streaming environment. Categories of techniques are identified based on different features in both data streams and activity recognition. The pros and cons of the algorithms in each category are analysed, and the possible directions of future research are indicated.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.