Abstract

The activity patterns of most terrestrial animals are regarded as being primarily influenced by light, although other factors, such as sexual cycle and climatic conditions, can modify the underlying patterns. However, most activity studies have been limited to a single study area, which in turn limit the variability of light conditions and other factors. Here we considered a range of variables that might potentially influence the activity of a large carnivore, the Eurasian lynx, in a network of studies conducted with identical methodology in different areas spanning latitudes from 49°7′N in central Europe to 70°00′N in northern Scandinavia. The variables considered both light conditions, ranging from a day with a complete day–night cycle to polar night and polar day, as well as individual traits of the animals. We analysed activity data of 38 individual free-ranging lynx equipped with GPS-collars with acceleration sensors, covering more than 11,000 lynx days. Mixed linear additive models revealed that the lynx activity level was not influenced by the daily daylight duration and the activity pattern was bimodal, even during polar night and polar day. The duration of the active phase of the activity cycle varied with the widening and narrowing of the photoperiod. Activity varied significantly with moonlight. Among adults, males were more active than females, and subadult lynx were more active than adults. In polar regions, the amplitude of the lynx daily activity pattern was low, likely as a result of the polycyclic activity pattern of their main prey, reindeer. At lower latitudes, the basic lynx activity pattern peaked during twilight, corresponding to the crepuscular activity pattern of the main prey, roe deer. Our results indicated that the basic activity of lynx is independent of light conditions, but is modified by both individual traits and the activity pattern of the locally most important prey.

Highlights

  • The sequence of day and night is the dominant ‘‘Zeitgeber’’, which synchronizes the internal clocks of most terrestrial organisms [1]

  • Our results indicated that the basic activity of lynx is independent of light conditions, but is modified by both individual traits and the activity pattern of the locally most important prey

  • Our analysis of lynx activity patterns over a wide latitudinal range revealed as predicted that the overall daily activity level was not influenced by daylight duration

Read more

Summary

Introduction

The sequence of day and night is the dominant ‘‘Zeitgeber’’, which synchronizes the internal clocks of most terrestrial organisms [1]. This functionality enables the organisms to proactively adapt their biochemical and physiological processes and their behaviour to the 24-h environment [2]. This general circadian pattern of behaviour can be modified by changing environmental conditions, such as season [3] and weather [4], or by social [5] and individual traits [6]. Lions (Panthera leo) take advantage of prey vulnerability, stalking at night in plains with little cover and diurnally in forests when prey congregates along rivers [19]

Objectives
Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.