Abstract

Caspases regulate cell death programs in response to environmental stresses, including infection and inflammation, and are therefore critical for the proper operation of the mammalian immune system. Caspase-8 is necessary for optimal production of inflammatory cytokines and host defense against infection by multiple pathogens including Yersinia, but whether this is due to death of infected cells or an intrinsic role of caspase-8 in TLR-induced gene expression is unknown. Caspase-8 activation at death signaling complexes results in its autoprocessing and subsequent cleavage and activation of its downstream apoptotic targets. Whether caspase-8 activity is also important for inflammatory gene expression during bacterial infection has not been investigated. Here, we report that caspase-8 plays an essential cell-intrinsic role in innate inflammatory cytokine production in vivo during Yersinia infection. Unexpectedly, we found that caspase-8 enzymatic activity regulates gene expression in response to bacterial infection as well as TLR signaling independently of apoptosis. Using newly-generated mice in which caspase-8 autoprocessing is ablated (Casp8 DA/DA), we now demonstrate that caspase-8 enzymatic activity, but not autoprocessing, mediates induction of inflammatory cytokines by bacterial infection and a wide variety of TLR stimuli. Because unprocessed caspase-8 functions in an enzymatic complex with its homolog cFLIP, our findings implicate the caspase-8/cFLIP heterodimer in control of inflammatory cytokines during microbial infection, and provide new insight into regulation of antibacterial immune defense.

Highlights

  • Pattern recognition receptors such as Toll-like receptors (TLRs) sense conserved microbial structures including lipopolysaccharide (LPS) or peptidoglycans [1]

  • TLR signaling can engage cell death pathways through activation of enzymes known as caspases

  • Our studies further demonstrate that caspase-8 enzymatic activity plays a previously undescribed role in ensuring optimal TLRinduced gene expression by innate cells during bacterial infection

Read more

Summary

Introduction

Pattern recognition receptors such as Toll-like receptors (TLRs) sense conserved microbial structures including lipopolysaccharide (LPS) or peptidoglycans [1]. RIPK1 interacts with TRIF by means of RIP homology interaction motifs (RHIM) and can bind FADD through shared death domains (DD), which in turn engages caspase-8 via death effector domains (DED) [7, 8]. Upon recruitment to this complex, caspase-8 undergoes dimerization and autoprocessing, which stabilizes the active enzyme, and initiates the proteolytic cascade that results in apoptotic disassembly of the cell [9]

Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call