Abstract

Chronically implanted electrodes were used to record the activity of identified single muscle spindle afferents in awake cats during responses to various types of manual and electrical stimulation. During vigorous cyclical responses such as shaking and scratching, spindle afferents generally maintained at least some activity during both lengthening and shortening of the parent muscle, indicating that the programs for these movements include both extra- and intrafusal recruitment. During noncyclical responses such as ipsilateral limb withdrawal and crossed-extension, spindle activity was modest and poorly correlated with extrafusal activity. Weak cutaneous nerve shocks during walking elicited complex excitatory and inhibitory phase-dependent reflexes in the various muscles studied but caused relatively little change in spindle afferent activity, indicating a lack of correlation between alpha and gamma motoneuron activity. A primary and a secondary afferent from sartorius muscle were recorded simultaneously during walking cycles that were perturbed by electrically induced twitches of the antagonist hamstring muscles; both demonstrated highly sensitive, short latency responses to the resulting skeletal motion, consistent with their previously suggested roles in detecting small brief mechanical perturbations. The degree to which fusimotor responses were correlated with extrafusal responses to somatosensory perturbations was highly dependent on the specific nature of the stimulus and the response. Fusimotor reprogramming of the spindle sensitivity appears to be a feature of cyclical movements that are presumably under proprioceptive control, whereas brief perturbations within the context of a particular motor program may be ignored by the fusimotor system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.