Abstract

Resveratrol is a common polyphenol of plant origin known for its cancer prevention and other properties. Its wider application is limited due to poor water solubility, low stability, and weak bioavailability. To overcome these limitations, a series of 13 novel resveratrol triesters were synthesized previously. In this paper, we describe the synthesis of 3 additional derivatives and the activity of all 16 against primary acute lymphoblastic leukemia cells. Of these, 3 compounds were more potent than resveratrol (IC50=10.5µM) namely: resveratryl triacetate (IC50=3.4µM), resveratryl triisobutyrate (IC50=5.1µM), and resveratryl triisovalerate (IC50=4.9µM); all other derivatives had IC50 values of >10µM. Further studies indicated that the active compounds caused G1 phase arrest, increased expression of p53, and induced characteristics of apoptotic cell death. Moreover, the compounds were only effective in cycling cells, with cells arrested in G1 phase being refractory.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.